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During operation, hydraulic-turbine blades are inevitably subjected to unsteady flow action, which 
induces forced vibrations of the blades. If the frequencies of the initiating forces are close to the natural 
frequencies of the blades, resonance can occur. This frequently causes blade failure in the operation of turbines. 
The above circumstances lead to the necessity of increasing the accuracy of calculation of eigenfrequencies 
and eigenmodes of blade vibrations. The difficulties in achieving this goal are due to a large number of factors 
that influence the solution of the corresponding hydroelastic problem, in which elastic deformations of blades 
and fluid motion should be determined simultaneously. 

In most of the former papers devoted to this problem, these factors were not taken into account. Thus. 
Gorelov and Guseva [1] did not take into account the curvature of the blade surface, and also determined 
approximately (in a two-dimensional formulation) the hydrodynamic interaction. Naumenko et al. [2] studied 
a blade model in the form of a plate of variable thickness. Sundqvist [3] considered this problem for a blade 
model in the form of a variable-thickness shell in the most complete approximation and with allowance for 
spatial flow. However, the finite element method (FEM) employed in [3] to describe motion of both solid and 
fluid particles requires a large computer memory and time, and this limits the possibilities of the method in 
engineering practice. 

The present work seeks to develop a method for calculating the natural vibrations of blades using a 
sufficiently general model similar to [3], which can be realized on personal computers. For this, to determine 
the hydrodynamic loads acting on the blades, we used the integral equation method, which decreased by unity 
the dimension of the corresponding hydrodynamic problem. 

1. Basic A s s u m p t i o n s  and Formulation of  the  P r o b l e m .  We consider the problem of small free 
linear vibrations of rotor blades (Fig. 1) of an axial hydraulic turbine in a fluid. The rotor is simulated by 
an annular cascade consisting of N identical, fairly thin blades located between two infinite circular cylinders 
with radii R1 and R2. We assume that the interaction between the blades occurs only via the fluid, which is 
ideal and incompressible and whose motion is caused only by blade vibrations. 

By virtue of the assumption of small blade thickness, we write the problem for the displacements of 
the centroidal surfaces. According to the condition of cascade uniformity [4], the normal vibrations of the 
centroidal surfaces can be written as 

wJm=uJm(x)ei(~j+uJ m) ( j , m = O ,  1 , 2 , . . . , N - 1 ) .  (1.1) 

Here #5 = 27rj/N is the phase shift between vibrations of neighboring blades, wj is the eigenfrequency of blade 
vibrations with a phase shift pj ,  UJm is an amplitude function of the displacement of the centroidal surface 
Sm of the ruth blade, and x is the radius vector of the points on the surface Sin. 

Taking into account (1.1), we can reduce the equation of the normal vibrations of the blade cascade 
with allowance for their hydrodynamic interaction to the following matrix equations: 
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Here 

2 [ C - A i ( M + A i ) ] X j = O ,  A j = w  i (j = 0 , 1 , 2 , . . . , N -  1). (1.2) 

N-1 
Aj  = ~ Lse'"Js; 

s=O 

s = n - m  for n />  m; s = N + ( n - m )  for n < m, Ls are the matrices of the hydrodynamic influence coefficients 
of the generalized displacements of the nth blade on the generalized hydrodynamic forces acting on the ruth 
blade, C and M are the stiffness and mass matrices, and X i is the vector of the coefficients of approximation 
of the amplitude function u~  of the initial blade (m = 0) over a system of basis functions. It is required 
to determine the eigenvalues of the matrix equation (1.2). For this, it is necessary to choose preliminarily 
a system of basis functions, to construct stiffness and mass matrices, and to determine hydrodynamic loads 
acting on the vibrating blades. 

2. Use  o f  t h e  F E M  to  D e t e r m i n e  S t i f f n e s s a n d  Mass  M a t r i c e s .  At present, there are many 
formulations of shell finite elements to calculate the strength and vibrations of thin-walled structures. Among 
these of great interest is the formulation of an isoparametric shell finite element obtained by direct introduction 
of kinematic and static hypotheses of shell theory into the three-dimensional theory of elasticity [5, 6]: 
�9 a filament which initially coincides with the normal vector to the centroidal shell surface remains straight 
during deformation and its length does not change (Timoshenko's kinematic hypothesis); 
�9 the stresses in the normal direction to the centroidal surface of the shell are negligible compared with the 
other components of the stress tensor. 
Since in the construction of this element, no additional restrictions, besides the two mentioned above, are 
imposed on the equations of elasticity theory, the finite element can be used to calculate nonshallow shells 
and variable-thickness shells. The turbine blades are among this class of shells, and, hence, the element can 
be naturally used to calculate strains of such structures. 

Korobeinikov [7] proposed a nonlinear formulation of the above-described isoparametric element. 
Element approximations ranging from linear to cubic are used. The element stiffness matrix is constructed so 
that separate integration of the membrane and displacement terms is possible [5]. This element is included in 
the finite-element library of the PIONEER program [8]. 

Using an isoparametric finite shell element [7], we derive expressions for the stiffness C and mass M 
matrices which are required to solve the problem of vibrations of hydraulic-turbine blades in a fluid. Since we 
study linear vibrations of the blade, the matrix C is defined in a linear formulation. We consider a certain 
finite element (Fig. 2). As a reference system we use Cartesian coordinates ( x l , x 2 , z  3) with unit vectors el. 
e2, and e3. Let r 1 and r 2 be natural coordinates on the centroidal surface of the shell element, and n the 
coordinate in the normal direction to the centroidal surface of the shell (Fig. 2). Note that the coordinate 
system (r l , r2 ,  n) is not orthogonal in the general case. Using Timoshenko's kinematic hypothesis, we can 
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write the displacement vector of a material point on the shell element as [5, 6] 

K K 
u = ~ hku  k + akhk ( - -akVk  2 + flkVlk), 

k = l  2 k=l 
(2.1) 

where hk = hk(r l, r 2) a r e  interpolation polynomials; u k is the displacement vector of the nodal point k, ak is 
the shell thickness at the nodal point k, V1 k and V2 k are orthogonal unit  vectors in the centroidal surface of 
the shell to the nodal point k, which can be constructed, for example, by the formulas proposed in [5, 6], a j' 
and ~k are small rotations of the normal unit  vector n k around the vectors V~ and V2 k, respectively (Fig. 2), 
and the superscript and subscript k takes on values from 1 to K, where K is the number  of nodal points in 
the element. 

The strain-tensor components  are written as 

1 
e i i=  ~(ui,j + uj,i). (2.2) 

The subscript after the comma denotes the partial derivative with respect to the corresponding coordinate. 
We introduce the vector of nodal displacements of the element: 

4, .1, 4 ,  4 ,  (2.3) 

(the superscript t denotes transposition).  We also introduce a vector composed of the strain-tensor 
components: 

e = [ e n ,  e22, e33, 2e12, 2e13, 2e23] t. (2.4) 

Using (2.1) and notat ion of (2.3) and (2.4), we can write relations (2.2) in matrix-vector form as 

e = B u e. (2 .5)  

The components of matr ix  B are given in [6]. 
To take into account the equality to zero of the stress component  in the normal  direction to the 

centroidal surface, we introduce a local coordinate system (3:1,~2,~: 3) of the layer with orthogonal basis 
vectors el,  e2, and e3 so that  the unit  vectors el and e2 are in the plane n = const, and the unit  vector e3 is 
directed normal to this plane. To avoid confusion, note tha t  basis unit  vectors V~, V2 k, and n ~ are introduced 
at the nodal point of the centroidal surface of the element,  and the basis unit  vectors el ,  e2, and e3 are 
constructed at the integration points over the element volume. We introduce a vector composed of the strain- 
tensor components  (the component  r is excluded from consideration because of the assumption of equality 
to zero of the corresponding stress tensor component):  ~ = [~11, ~22, 2~12, 2~13, 2623] t (the superscript hat 
denotes the components  of the corresponding vector or tensor in the coordinate system of the layer). Let 
Q be the matr ix of t ransformation of the vector composed of the strain-tensor components  in the Cartesian 
coordinate system (x 1, x 2, x 3) to the vector composed of the strain-tensor components  in the coordinate system 
of the layer (~:1 ~2,.~3): 

= Q e. (2.6) 

The elements of the matr ix  Q are found by the usual rules of transformation of the tensor components  from 
one coordinate system to another.  Substi tut ing (2.5) into (2.6), we obtain 6 = / 3 u  e and [3 =- QB. 

Let us introduce a vector composed of the stress tensor components &ij in the layer coordinate system 
(kl k2,~3) (satisfaction of the equality &33 = 0 by virtue of the adopted static hypothesis is assumed): 
& = [&ll, a22, 2&12, 2&13, 2&23] t. The governing relations for a linear isotropic elastic body are written as 
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& = b 6, where the matrix [5] is 

D =  E 
i - v 2 

1 v 0 0 0 
v 1 0 0 0 
0 0 0 0 
0 0 0 k(1 - v)/2 0 
0 0 0 0 k(1 - v)/2 

Here E is the Young modulus, v is the Poisson ratio, and ]r is a correcting factor. Direct use of Timoshenko's 
kinematic hypothesis in the case of elastic deformation leads to a linear stress distribution across the shell 
thickness. This circumstance contradicts the fact that the shear stress components bx3 and O'23 should be 
equal to zero on the face surfaces of the shell. The latter condition is satisfied with a parabolic distribution 
of these shear stress components across the shell thickness. The parabolic distribution law of the shear stress 
components is satisfied in an energetic sense when the correcting factor ]r = 5/6 is used [5]. In the present 
work, we used this value of the factor k. According to the standard FEM, the stiffness matrix of a shell finite 
element is given by the formula [5, 6] 

= [ [3tD[3dV, (2.7) C e 

V �9 

where V e is the volume of the finite element. 
From (2.1) and (2.3) we obtain the relation u = H u e, where the elements of the matrix H have the 

form 

I hk 
H . . . .  I 0 

I 0 

Here gkli = - (a jZ )V~  and g~i = (ak/2)V~. 

0 0 nhkgkll nhkg~l [ ] 
hk 0 nhkg~2 nhkg~2 I . . . .  J 
0 hk nhkg~3 nhkg~3 I 

According to the standard FEM technique, we write a consistent mass matrix for the element [5, 6]: 

M e = / HtHps dV, (2.8) 
* s  

Ve 

where Ps is the mass density of the shell material. 
The stiffness matr ix (2.7) and the mass matrix (2.8) are integrated over the volume of the elements 

numerically by means of the Gauss-Legendre quadrature formulas. The stiffness matrix can be integrated 
with the full order or a reduced order, or using the rule of selective integration of membrane and shear 
terms [5, 6]. The full integration order depends on the degree of the interpolation polynomials hk(r x , r2). For 
example, when the full biquadratic approximation of the geometry and vector of the unknown displacements 
of the centroidal surface of the element (K = 9) and a linear approximation over the element thickness (linear 
approximation over the element thickness is consistent with Timoshenko's kinematical hypothesis) are used. 
the full integration order of the stiffness matrix with respect to the coordinates r 1, r 2, and n by means of the 
Gauss-Legendre quadrature formula is 3 • 3 x 2 [6]. In this case, the total number of the integration points 
in the element is 18. With a reduced integration order, 2 x 2 x 2 quadrature points are used. In selective 
integration of the stiffness matrix of the 9th nodal finite element, the membrane terms are integrated with 
3 x 3 x 2 order and the shear terms with 2 x 2 x 2 order. In using reduced and selective orders of integration. 
we obtain a more rapid convergence to the exact solution for thin shells than in using the full integration 
order [5, 6]. However, this is not always possible because of the occurrence of spurious zero eigenmodes, and 
this integration cannot be performed for all edge constraints of the shell. 

Summing up the stiffness matrix and the mass matrix of the elements by the usual procedure [5, 6], 
we obtain the global stiffness matrix C and the mass matrix M of the entire finite-element ensemble. 

3. D e t e r m i n a t i o n  o f  H y d r o d y n a m i c  Loads  on Blades .  We consider an annular cascade of N 
blades in Cartesian coordinates (x 1, x 2, x3). The blades vibrate in an ideal incompressible fluid between two 
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infinite coaxial circular cylinders C1 and 6'2 with radii R1 and R2, respectively. The x 1 axis is directed along 
the cylinder axis. We assume tha t  at infinite distance from the cascade, the fluid is at rest, and the flow past 
the blades is not separated. Under the conditions of the problem, the cascade blades are sufficiently thin. 
Therefore, to determine the hydrodynamic loads, the blades can be simulated by infinitely thin surfaces Sn 
(n = 1 , 2 , . . . ,  N) that  coincide with the centroidal surfaces of the blades considered. 

Since the ampli tude of the vibrations is small, the fluid flow is potential. To describe it, we can introduce 
the function �9 that  is related to the fluid-velocity potential  r by r = iP~w~(x)e  i'~t, where x = [x a, x 2, X3] t. 

The function �9 satisfies the Laplace equation everywhere outside the blades and is subjected to the 
boundary conditions of nonpenetra t ion on the surfaces S,, and cylinders C1 and 6"2 and to the condition that 
perturbations decay with distance from the cascade. By virtue of the fact that  the leading and trailing edges 
of the blades are under  identical conditions, we seek a solution of the problem in the class of circulation-free 
flows. A vortex sheet does not form behind the blades, since the fluid-velocity circulation around any contour 
embracing the blade in the radial cross section is equal to zero. 

We replace the cascade blades S,, and the cylinders C1 and 6'2 by vortex surfaces and introduce the 
velocity rotor on the surface Sn in the form 3" = n x [v], where n is a unit normal vector to the surface and Iv] 
is the velocity jump across Sn. The  fluid-flow velocity induced by these vortices is given by the Biot-Savart 
formula 

= - [ 7 x V y G d S ,  G = 1/(4~r]x - Yi)- V(X) V(I) 

Here y = [yl, y2, ya]t is the radius vector of a point on the surface S,, and VyG is the gradient of the function 
G calculated with respect to the  vector y.  Here and below the quantities that  have the dimension of length 
are related to the radius R2 of the external cylinder. The  nonpenetrat ion condition gives a system of integral 
equations for the vector % The per turbed velocities decay with distance from the cascade because of the 
choice of the fundamental  solution G. Since the blades vibrate with a constant phase shift, and perturbations 
decay with distance from the lattice, it will suffice to consider the surface parts of the cylinders C1 and C2 
with length L along the x 1 axis and with size 2~r/N along the angular coordinate in the plane x 1 = const. 
The circulation-free fluid flow is ensured in going to the discrete analog of the problem. The  resulting system 
of integral equations is solved by the method  of discrete vortices. As the main discrete element,  we choose 
a closed trapezoidal vortex frame. The circulations along the sides of the frame are equal and constant in 
magnitude,  and their sum is equal to zero [9]. The  method  of vortex frames for calculating circulation-free 
flow past finite-span wings of finite ampl i tude is described in [10]. Since the circulation F along one side of 
the frame is constant,  we have 

0y  
7 dS = F ~ ds, 

where s is a variable along this line. In this case, the integrals along the sides are calculated analytically. For 
an annular cascade, it is convenient to introduce two directions lying in the tangential  plane to the surface 
considered (blades or cylinders): 
(1) in the directior, of the radius r, 
(2) along the tangent r to the line of section of the blade for r = const. 

The vortex frame IIki with circulation Fki = F(x~:i) (x~i is the radius vector of the middle of the 
vortex segment [Ak,i; Ak+l.i]) consists of vortex segments [Ak,i; Ak+1,i], [Ak+l,i; A~+l,i+l], [Ak+i,,+l; Ak, i+l]. 
and [Ak,i+l; Ak,i] (k = 1, N1 and i = 1, N2, where N1 is the number  of partitions over r and N2 is the number 
of partitions over r).  Integers 1 and 2 in Fig. 3 denote, respectively, the control points and points at which 
the pressure jump is calculated, and integer 3 denotes the nodes of the finite element. 

Then, the component  7r of the vector 3' (intensity of bound vortices), which is necessary in determining 
the pressure jump across the blade, has the form 7r(x~i ) = (Fki - Fk,i-1)/6r since the segment [Ak,i; Ak+l,i] 
enters into the neighboring vortex frames Hk,i-1 and Hki with different circulation signs. Here (Sr is the width 
of the vortex frame. In this case, since the flow is circulation-free, we assume that  the circulations of the 
vortex frames at the trailing edge of the blade are equal to zero. 
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By virtue of the aforesaid, the determination of the circulation of the vortex frame of the blade F = 
�9 {Fk,} and the cylinders F1 = {Flm,} reduces to solution of the following system of linear algebraic equations: 

W ( x , x ) F  + W l ( x , y ) r l  = F and W ( y , x ) F  + WI(y ,y)F1 = 0. Here x and y ate the radius vectors of 
points on the blade and on the cylinders 6'1 and C2, W is the matrix of the normal velocity components 
induced by the vortex frames of the blade with unit circulation at points on the blade [W(x, x)] or at 
points on the cylinders C1 and C2 [(W(y, x)]; W1 is a similar matrix for the normal velocities of the vortex 
frame modeling the effect of the cylinders Ci and C2 at points on the blade [Wl(x,y)] and at points on 
the cylinders [Wl(y, y)], and F is the vector of the amplitudes of the normal velocity component of blade 
vibrations. Multiplying the second equation of the system from the left by W11(y,y)  and substituting the 
vector 1"1 into the first equation, we find the circulations of the vortex frames of the blade: F = T - 1 F  and 
T = W(x, x) - Wl(x, y)[W~'I(y, y) W(y, x)]. Note that this algorithm is more effective if in determining the 
velocities induced by the vortex frames of the blades at points of the cylinders, one draws their reflection with 
respect to the cylinders C1 and 6'2 at each cross section x 1 = const. 

To determine nonstationary hydrodynamic loads, we use the Joukowski theorem for circulation-free 
flow, according to which the pressure jump is given by the formula 

0Fc / 
[p] = p/--~-', r e =  n • 7dx ,  

C(M) 

where ~] = p_ - p+ and p / i s  the fluid mass density. The curve C(M) is drawn on the vortex surface of the 
blade from the leading edge to point M at which the pressure difference is determined. 

The discrete analog of these relations has the form 
Err 

Pi,,, = ~ git, gjl = F11, giN2 = -FLN2-1, 
k=l  

a,k=r;k-rj ,k-1 for k # l , k # . N 2  ( j = I , N 1 ,  m = l ,  N2). 

Here Pjm is the pressure jump in the middle of the bound vortices of the vortex frame. These formula take 
into account that the circulations of the vortex frames on the left and right edges of the blade vanish. 

4. A l g o r i t h m  of  S o l u t i o n  for t h e  E igenva lue  P r o b l e m .  The solution of the corresponding 
hydrodynamic problem by the method of integral equations, besides the above-mentioned advantages, involve 
difficulties in determining the matrices A 1 since the basis functions of the elastic deformations of the blade 
are consistent with the FEM. In this case, to construct the matrices Aj, it would be required to solve the 
corresponding hydrodynamic problem for different linear independent blade-vibration modes as many times 
as the number of finite elements used to describe the blade deformation as a whole. A specific feature of the 
proposed algorithm is that the iterative method of solving the eigenvalue problem allows one to eliminate 
calculation of the matrices A t in explicit form. Indeed, the matrix enters into Eq. (1.2) only as a product 
by the vector Xj,  which is the vector of the hydrodynamic load on the blade PJ = AjXj.  In the nth step 
of the iteration process described below, this vector is determined by solution of the hydrodynamic problem 
formulated in Sec. 3 with the given vibration mode found in the previous step�9 Solution of this problem 
immediately gives the hydrodynamic pressure difference [pj] on the centroidal surface of the blade. The load 
vector P~ acting on a certain element on the centroidal surface S e is related to the pressure jump on it by 

P; = / [ p i l g t n  dS, (4.1) 
8e 

where H is the matrix defined in Sec. 2. The global vector P j  is obtained by the usual summation rule [6] for 
the vectors of nodal loads of all elements. 

Gaussian-Legendre quadrature formulas were used in the numerical integration of (4.1). Since finite 
element integration points do not coincide with the nodal points in the method of integral equations, 
interpolation was performed to obtain the pressure jump at the required points. We used linear interpolation, 
since the pressure-jump function does not show required smoothness near the leading and trailing edges. The 
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relative location of the finite elements and the vortex frames is shown in Fig. 3. 
The eigenmodes of blade vibrations in vacuum were used as the initial approximation.  The experimental 

and calculated data  indicate that  the eigenmodes of blade vibrations of three lower tones in fluid are close to 
the corresponding modes of blade vibrations in vacuum. Therefore, the convergence of the iteration process 
is very good, as confirmed by the calculations. Since the blade-vibration modes of lower tones have a small 
number of nodal lines, the hydrodynamic  problem can be solved iteratively with a relatively small number  of 
vortex frames. 

The iteration process is performed as follows. Using the Cholesky factorization for the stiffness matrix 
C = LL t (L is the lower tr iangular matrix),  we perform a transformation of Eq. (1.2): 

[rljg - L - 1 ( M  + A j ) ( L t ) - I ] Y / =  0, 

where r/j = I /Aj,  Yj  = LtXi ,  and J is a unit  matrix. As a result, we obtain the eigenvalue problem for the 
Hermitian matrix: 

Cj = L -1 (M + Aj)(nt) -t. (4.2) 

According to [11], the first eigenvalue r/lj of the matrix Gj can be determined by the method  of direct iterations 
of the form 

y , .+ l  n , = G jYj  /IIY~'IIoo, (4.3) 

where II I[oo is the norm in loo, i.e., the vector element with a max imum module.  With  allowance for (4.2). 
relation (4.3) becomes 

y~+l= [L-iM(Lt)-ty,] + L-~p~,] / lly~,ll~o. (4.4) 
Here the matrix Aj is not contained. As the initial approximation of process (4.4), we use the eigenvector of 
blade vibrations in vacuum, which is determined by the subspace iterative method  [6]. 

According to [11], this iteration process converges so that  Y~ /IIY~' ~ Y j  /IIYi II~ and IIY~ --+ , t  
for n ~ ~ .  The  convergence speed is given by the ratio r/lj/r/2j. Thus,  if the eigenvalues r/2i and/71 i are close. 
the convergence speed is slow. It can be increased by means of a shift. In this case, the matr ix  Fj = Gj - ( J  
has eigenvalues r/D - (,  r/2j - ( , . . .  and the same eigenvectors as the matrix Gj. The  shift is chosen so that  the 
eigenvalue r/2j - ( has a max imum module and, at the same time, ratio (4.3) for the matr ix  Fj is smaller. To 
determine the subsequent eigenvalues, we use the exhausting method by means of uni tary transformations [11]. 

5. N u m e r i c a l  R e a l i z a t i o n  of  t h e  A l g o r i t h m  a n d  C o m p a r i s o n  of  t h e  C a l c u l a t i o n  R e s u l t s  
w i t h  E x p e r i m e n t a l  D a t a .  We developed an IBM PC/AT-486 computat ion program for eigenfrequencies 
and modes of blade vibration in a fluid under  the assumption of blade clamping to realize numerically the 
algorithm of solution of the formulated problem. This specialized computat ion program was developed on the 
basis of the P IONER general-purpose program. During adjus tment  of the program, some difficulties arose 
in choosing test examples that  would have reliable inlet information and reliable de terminat ion  results for 
the required quantities,  and also adequately reflect the generality of the posed problem. From this viewpoint, 
we chose the results obtained experimentally at the Leningrad Metal Plant in studies of the frequencies and 
modes of the eigenvibrations of a sectorial plate of variable thickness [12] and a PL 587B blade, which were 
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Numer ica l  simulation 

Fig. 5 

Experiment 
,~1 2 

Fig. 6 

TABLE 1 

f, Hz 

Calculation Tone 
number 4)<6 

elements 

408 
443 
566 
827 

4•  
elements 

412 
446 
574 
815 

4x12 
elements 

414 
444 
570 
798 

Experiment 

TABLE 2 

f ,  Hz 

Tone 

number 

416 1 
402 2 
514 3 

4 714 

CMculation 
4x6 I 4x9 

elements elements 

140 144 
212 212 
329 320 
545 450 

4• 
elements 

145 
209 
314 
486 

Experiment 

159 

277 
420 

kindly provided by V. A. Kovalenko and A. P. Nildforov. The tests were performed by the resonance method. 
A sample in the form of a plate of variable thickness (its dimensions are given in Fig. 4) was fixed in a massive 
hub, which was suspended on a rubber membrane to a rigid bracket. A cylindrical shell that simulated the 
casing of the wheel was placed coaxially to the peripheral section of the specimen. An exciting force was 
applied to the hub with the sample and was directed along the axis of the suspension. The vibration modes 
were determined by the Lissajous figures. Experiments in water were performed with various water levels. 
Analysis of the results show that with a water layer above 75 mm the eigenfrequency of the specimen remains 
unchanged. 

Tables 1 and 2 give the calculated eigenfrequencies f = w/2~" of the sectorial plate in vacuum and water. 
respectively, obtained for various numbers of blade finite elements, and their experimental values (the second 
vibration mode in fluid was not detected experimentally). The plate vibration modes in water practically did 
not differ from the corresponding modes in air in both the calculation and experiment. Figure 5 show the zero 
displacement lines of the first four vibration modes of the plate. Evidently, the calculated eigenfrequencies of 
the plate, except for the first tone, are somewhat higher than the experimental. 

The eigenfrequencies and modes of blade vibrations for a PL 587B hydraulic turbine model were also 
calculated. In this case, the inlet data for the calculations were obtained with the mathematical blade model 
developed at the Institute of Mathematics, Siberian Division, Russian Academy of Sciences. The finite-element 
blade model is presented in Fig. 6. Table 3 gives the eigenfrequencies for a blade fastened to a hub. The slight 
difference between the calculated and experimental frequencies and vibration modes is obviously due to the 
fact that the calculated model does not take into account the actual clamping to the elastic huh for the blade 
and the sectorial plate. 

As for the sectorial plate, the first three vibration modes (Fig. 7a-c, respectively) in vacuum and water 
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TABLE 3 

f, Hz 

Tone in vacuum 

3 1525 1412-1496 

TABLE 4 

/, i-iz 

in water Tone a = -I0" 

1710254 612-770 2 1710291 1710202 957-1066 3 

a=O 

#=0  ] ~=Tr 
471 448 

oL = 10 ~ 

;~=0 t ,u=Tr 
473 448 

::6 699 
I122 

x ~  ~ "x$ ~ x 1 x I ~ , ~  

Fig. 7 

practically do not differ from one another. The dashed curve is the initial position of the blade, and the solid 
curve is a deformed state. Since the eigenmodes are determined with accuracy up to a constant multiplier. 
the multiplier used is fairly large for better representation of the deformed structure in Fig. 7. 

Table 4 gives the calculated eigenfrequencies for the same model but with a blade cascade with various 
stagger angles and phase shifts # = 0 and 7r. In this case, a = 0 corresponds to the working position of the 
blade in the cascade, and a = :t:10 ~ corresponds to rotation from the initial position around the rotation axis 
of the blade. The results indicate that the phase shift has a greater effect, particularly on the first frequency. 
than the stagger angle. 

The numerical experiment showed fast convergence of the iterative process in calculations of the 
eigenfrequencies and vibration modes. In the examples considered, the number of iterations depended on 
the tone number and did not exceed five. The iterative process was continued until the relative error of the 
eigenvector was 0.001. The computation time on an IBM PC/AT-486 (40 MHz) computer was 30 min. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 94-01- 
01220-a). 
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